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Abstract

This paper is concerned primarily with determining the mutual coherence

function of the field produced by a plane quasi-monochromatic source in a re-

gion of variable refractive index. A scalar theory is used throughout.

A brief review of the conceptual background of coherence theory is pre-

sented in Section 1. Section 2 contains an outline of the mathematical formal-

ism of coherence theory and shows that in a region of variable refractive index

the mutual coherence function is propagated according to a pair of inhomoge-

neous scalar wave equations. In Section 3 the pair of wave equations are solved

with appropriate Green's functions. An expression is derived for the mutual

coherence function of a field produced by a plane quasi-monochromatic source.

In Section 4 the case of a statistically homogeneous medium is treated and an

expression for the ensemble average of the mutual coherence function is obtained

in terms of integrals of the two-point correlation function characterizing the

medium.

Siii



ON THE MUTUAL COHERENCE FUNCTION
IN AN INHOMOGENEOUS MEDIUM

1. Introduction
The development of coherence theory has been strongly influenced by re-

search in visual optics. The theory is concerned with the behavior of electro-
magnetic fields at frequencies so high that measurements can be made only by
averaging intensities over periods of time that are long compared with the times

involved for individual fluctuations of the fields. The fields are assumed to have

stationary time dependence, at least for the intervals of the averaging periods.

In an advanced theory of optical behavior, the concepts of amplitude and
phase, which are often helpful in other branches of electromagnetic theory and

in elementary optics, are no longer useful. The usefulness of these concepts
breaks down not only because the high frequencies involved in optics make it im-
possible to measure the amplitude and phase of field components, but even more

fundamentally, light in its usual form (the superposition of a large number of
randomly timed statistically independent pulses) is not strictly monochromatic
but consists of spectra of finite widths. Indeed, under the conditions stated it

cannot be analyzed even by a Fourier decomposition into strictly monochromatic

components because only the power carried by a narrow band of wavelengths

can be measured.

In the more elementary theory of opticalbehavior, the concepts of ampli-
tude and phase presuppose a strictly monochromatic source of illumination and

are not measurable quantities (at least in the optics realm). The basic quantities

in coherence theory (time-averaged intensities and functions that express the
degree of correlation between the vibrations at different points in the field),

however, are measurable and do not presuppose the nature of the field. Further-

more, as limiting cases, coherence theory yields not only a strictly monochro-

matic theory, but also a theory of incoherent radiation (addition of intensities)

and gives an accurate description of the region of partially coherent light between

these two limits.

Received for publication 11 October 1961.



2

2. Outline of Mathematical Formalism of the Theory0

The fundamental entities of coherence theory - the mutal coherence func-

tion and the complex degree of coherence - will be introduced in this section,

and the wave equations for the propagation of the mutual coherence function in

an inhomogeneous medium will be derived. For the most part, theorems will

be stated and the reader referred to the literature for proofs and further dis-

cussion.

In a source-free, although not necessarily homogeneous, medium the real

scalar function of position and time Vr(P, t) satisfies the scalar wave equation

V2 Vr(P, t) 1 
2 vr(p, t)

C2 (P) "a t 2

where P is the position vector. (It will occasionally be convenient to indicate
position by a subscript or to omit explicit spatial dependence. )

The intensity of vr (t) averaged over an interval of time of length 2T is

given by the expression

[Vr (p, t) ] dt.
2T -T

In the following applications, T will be extremely large in terms of time units

of the order of the actual fluctuations (for example, the mean period 1/ where

v is the mean frequency of the disturbance). It is therefore convenient to let

T -- - in expressions for the time-averaged intensity and for the correlation

functions to be introduced below. It is assumed, of course, that the

him - CTrvr(p, t) 2dt
T-- 2T T

is finite.

A complex function V(P, t), the analytic signal, is associated with the real

function Vr(p, t). The advantages of choosing the analytic signal as a complex

representation of the disturbance have already been discussed at length. 2 The

analytic signal may be defined in terms of Hilbert transforms as follows:

Let fr(t) be a real function of time such that its Hilbert transform exists

(a sufficient condition is square integrability); the analytic signal, f(t) [associ-

ated with fr(t) ], is defined to be f(t) = fr(t) + ifi(t), where fi(t) is the Hilbert

transform of fr(t); that is,

fi(t) = I 00 fr(tI) dt' = H [fr(t)]

00 t'-tA
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The integral signf* denotes that the Cauchy principal value is taken at t'=t.

Although Vr(t) is in general not square integrable, it is possible to employ

an analytic signal representation by the stratagem of truncating Vr (t) at a particular

value, t=T, and then let T-. . Thus, let

Vr(P; T, t) = vr(P, t) Itl < T
0 ItI>T

and the associated analytic signal V(P; T, t) be given by

V(P; T, t) = vr(P; T, t) + iTVi(P, t)

where

TwV(p, t) = H [vr(P; T, t)].

It should be noted that TV'(P, t) is not a truncated function.

In terms of these functions the basic quantities of coherence theory, the

mutual coherence function, and the complex degree of coherence may be pre-

cisely defined. The mutual coherence function F(P 1 , P2 , 1 2 (T) is defined

as the complex cross correlation between the analytic signal representation of

the real field at the two points P 1 and P 2 ; that is,

2(T ) -- lim V 1(Tt + T) V* (T, t) dt.

The time average and limiting process is denoted by sharp brackets:

= <Vl(t + )

By use of the theorem that the cross correlation of the two real functions is

equal to the cross correlation of their Hilbert transforms in the same order,3

it can be readily shown that the time-averaged intensity Im at the point Pm is
mmmgiven by 1/2 rmm (0); that is,

I = <[V r(t)]2> = 1/2 r (0), (m = 12)

m m mm

Also, by use of the theorem that the convolution of two analytic signals is itself

an analytic signal, it can be shown 3 that fE2 (T) is an analytic signal. From the
1 1

last result it follows that r 2 (T) possesses a Fourier spectrum that is zero

for half the frequency range. Thus

1 2 12 e
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where

A 0027riVrT =~ <oF12(V) = 12(T") e rvdT 0 V< 0.

12 k 2(r

It should be noted here that in formulating the solution to actual problems,

expressions of the form <V 1 (tI+t) V 2 *(t 2 +t)> are usually obtained. Under

the change of variables t' = t + t 2 , <Vl(tl+ r)V 2 *(tl)> is obtained, where T

t 2 -t 1 . The additional assumption of stationarity of V(t) (that is, the time aver-

ages are independent of the choice of time origin, or equivalently that the time

averages are a function of the difference in time only) is necessary to equate

r (-) with <v 1(t1 +t) V2 *(t2 +t)>.

A normalized form of the mutual coherence function, called the complex

degree of coherence and denoted by y 12(fl, is very useful in coherence theory;

712 (T) is defined to be

F2(T)
7 1 2 (  T ) -- 2

f (0) 1;(0)

With the Schwartz inequality it can be shown that 0< 1 I2(r) 1 i. The limits

characterize incoherent radiation and coherent radiation respectively.

The important result that I 2 (T) is propagated according to a pair of wave

equations will now be proved. Specifically:

S2 Fr(p p ~ .) = 2 1 a2 r (P , P2  r)
r - 2 (P a 2(m - 1,2). (2.1)

Here the Laplacian Vn 2 acts on the coordinates of the point Pm (m = 1, 2), and the

spatial dependence of the velocity of propagation is indicated.

To prove Eq. (2. 1), it is assumed that Vr(P, t), hence the truncated function

Vr (P; T, t) satisfies the scalar wave equation

2 V (P; T, t) (2.2)
V 2 vr(P; T, t) C2 (P) at 2

Also, as defined above

, t) , Vr (P T, t1) dt'. (2.3)

2
Both sides of Eq. (2. 3) are operated on with the LaplacianV , the order of

operations is interchanged, and with the theorem 4 that the Hilbert transform of

the derivative of a function equals the derivative of the Hilbert transform of the

function, the following is obtained:



5

0 _ 2 vi(p° t)
VT Vi (pt) a 2 (2A)

at

Multiplication of Eq. (2. 4) by i and addition to Eq. (2. 2) yields

2 V T a 2 V(P; T, t) (2.5)
v V (P; T C t) = at2 (

Thus, the analytic signal itself satisfies the wave equation.

Now

T 1, P2  ) =m V (P1;T,t+)V*(P2 ;Tt) dt. (2.6)

Equation (2. 6) is differentiated with respect to PI, the order of operations is

interchanged, and Eq. (2. 5) is substituted, yielding

V2  lif 1 0 V 2*V 12 T) = . [VI(T, t+T) ]V 2 *(T,t) dt1 12 2T

2
lim 1 C i 2VI(T, t + T) *

2T Cp 3 V2 (T,t)dt

2= a72-a2 F(T).

Similarly,

r2 F1(T) = i

12 p 2)  3 72

and the proof is complete.

3. Mutual Coherence Function in an Inhomogeneous Medium
The central problem of this paper is the determination of the mutual co-

herence function for a field produced by an extended polychromatic source in a

region of variable index of refraction. In the discussion, S is an arbitrary sur-

face containing an extended polychromatic source with a known distribution of

mutual coherence; El and E2 are points in the illuminated field V; and S 1 and S2
are points on the surface S.

As shown above, the propagation of the mutual coherence function in a source-

free but inhomogeneous medium is govern.ed by the pair of wave equations

32 (7)
V2 r1() 1 072 ( m 1, 2. (3.1)
m F12(r 7( C 2 (P) 8T2
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It is assumed that fr 2 () is known for all pairs of points S 1 and S on the surface
S.

Let P1 2 () be the Fourier transform of F 12 (T). Then, as stated above,
since fr 2 (T) is an analytic signal, its Fourier spectrum contains positive fre-
quencies only; that is,

(T) = 1o f2v) e " 2,, i l dv (3.2)
12 12'

where

1
2 (v) 1j2  (3.3)

Substitution from Eq. (3. 2) and Eq. (3. 1) and interchange of the order of in-
tegration and differentiation yields

[V2 + k 2( )] P (v) e - 2 i VT dv = 0 (m = 1, 2). (3.4)

Since Eq. (3.4) holds for all 7,

[V12 + k2 (P 1, )] , (P1 , -P2 1 v) = 0 (3.5a)

V2 + p2 , v)] "(P, P2 ' V) = 0. (3. 5b)

Here k (P, 0 = 27rv/C(P). Thus, each spectral component of F (T ) satisfies
12the pair of Helmholtz equations, Eqs. (3. 5a and b).

In Eq. (3. 5a), P 2 is a fixed parameter so far as the operator is concerned.
In particular, Eq. (3. 5a) holds if P 2 is a fixed point S2 on a closed surface S.
The equation then becomes

[V, 2 + k2 (P A) _ () = 0. (3.6)
AThe boundary condition for Eq. (3. 6) is the known values of (S, i V). Hence,

the problem is to solve the pair of equations

[V1
2 + k 2 (P1 , V)] "(Pl, -, v) = 0 (3. 7a)

A
with F(S S 2 , v) known on the boundary, and

2 k2  A[V2 + k2(P V)] F(P 1 , P 2 , V) = 0 (3. 7b)
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A
with r(P 1 , S2, v) known on the boundary as a result of solving Eq. (3. 7a).

A formal solution to Eqs. (3. 7a and b) can be obtained easily in terms of

the Green's function G (P, PI) which satisfies the equation

[V2 + k 2 (_P)] G(P, P') = -6 (P-P') (3.8)

and which vanishes on the boundary S. In the case that S is plane, the Green's

function must be chosen not only to vanish on the boundary plane but also to

satisfy the radiation condition at infinity.

In the same way as if k were a constant, the following is obtained:

A A ^ aG (Pr ') 8G (P s')

r(P ,P 2)= (S ( 1' $ 2' ) 1 1 1 22 2 dS1 ' dS2 '. (3.9)

S2 ' S 1i 12'

In Eq. (3. 9) and in following equations primes are used to indicate the

variables of integration, and corresponding subscripts and primes attached

to the surface S also serve this purpose. Explicit dependence on the frequency v

has been omitted for conciseness. It will be shown below that G 2 = G*.

An explicit form for G (P, P')' can be obtained using an iterative procedure.

Equation (3. 8) is rewritten to represent k2 (P, v) as the sum of a fixed mean2 1
value k M and a variable part with zero mean, k (v) (P, v). Thus,

(V2+ k 2 ) G(P , P') = -6 (P-P')-k 2e(P) G (P, P'). (3.10)

(Physically E(P) can be said to be the variable part of the dielectric constant of

the medium.) Now Eq. (3. 10) can be formally taken to be an inhomogeneous

constant-coefficient Helmholtz equation with the right-hand side as the source

term. Acc "-dingly, a solution to Eh. (3. 10) can be obtained in terms of the

Green's fu . n g(P, P") which satisfies the constant coefficient equation

(V 2 + k 2 ) g(P, P") = -6(P-P") (3.11)

and vanishes on the boundary surface4 Since g also vahishes on the surface,

G(P, P') = g(P, P')+ k2Y e(P") G(P"' P') g(P, f") dV". (3.12)

V11

Equation (3. 12) can now be used as the basis for an iterative development:

G(P, P') = g(p, F') + k 2 Y" E(P") g(P", f') g(P", P ) dV"

4V1 (3. 13)
+ k4  (P (F) 11F') g(P''1.', F") g(P", f') g(P", F) dV'"1. dV"i

V V"ll

Substitution of the iterative series Eq. (3.13) into Eq. (3.9) yields the following

expression for the Fourier transform of the mutual coherence function:
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A ppA ag(, S 1  
P.~'F(Pj P 2) r ( I" F ') 1 ) 'g2 TV S2 dS1 dS

-2 -1

^ o (g2  ST2') V p1') ,gP1 , rS
1+ k F(S1  $2') g2 Vdt dS

- 2 - 1 1 - 1 It-k2  S2 t g - E(P) g 2 (P2 ' P2) dV2" dS l ' dS23 S' V 2'1 -21

-2 - 1 2 2V
r r P2..)glp- P l ,2 _Vj _S1 '-1

.T" (P (2" ) g (P ", S ') g2 (-P2 " 2')S2  S1' 1 ' ,, V1 V2 2 1 2 -2 '-2 2 c-V2" dSV1 dS2'

+k~ l V
1 V$2)
a

2 (Pa$2).f (I)'-I)IP'"'I)lP" 
-1 V' _V~~'d

2

+ k4 $ 2- 2 ( " ( P

S 2) -2 .. P ") g (P P _

S2 §1' V1? V 2 " V2 (" -- .1 - - -, dV2"- dV2" dS I' dS 2

+ o,

(3.14)

The Green's functiong (P, P, ) has been determined 2 for the important case in
which S is a plane surface. The result is given here:

±ik P-P'l ± i-p,1
g(p, P) = e e - - (3. 15)IP_-Pl iP.-P,I

The image of the point P in the plane S is denoted by P. (see Fig. 1). In
Eq. (3. 14) the plus sign is taken where a subscript 1 appears, and the minus
sign is taken where a subscript 2 appears.

AIt should be noted that an identical expression for F(P1, P2 , ) can be
obtained by a procedure that iterates for the transform of the mutual coherence
function itself rather than for the Green's function of the Helmholtz equation
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with a variable coefficient. This procedure puts Eqs. (3. 7a and b), the pair of

differential equations, in the form of a pair of equivalent integral equations by

use of Green's functions. Thus,
A A agl(P, S 1')

(P , S2' ) - (SI' - -1 dS I

k2  I (1 ') r(P1 s2) g1 (P1, -'1 ') dVl' (3.16a)
V 1 1

A 1( S 892(P 2 , S2I)
r'p -2 = - _ s dSS2 ' 

2 -2

+ k 2 5 e ' ( .P 2 ') g 2 (P 2 , P 2 ') dV 2
1 . (3. 16b)

V 2
t

Here, the Green's function g (P, P') is identicaltothe Green's functionof Eq. (3.11),

and the representation k 2 (P) -k[ 1 +e (_P) has again been employed. The in-

tegral equations, Eqs. (3.16a and b), are then used as the basis for an interative

procedure that starts with the surface terms as a zeroth order approximation

and by successive substitutions yields the same iterative series for (-P1 P 2 )

as obtained above.

The form of the iterative solution, Eq. (3. 14), obtained for the propagation

of the mutual coherence function in a medium in which the refractive index

varies is that of the uniform space solution

A _gj(P_, sit g 1 ' d 2'
r~s -- 1 d~Id

modified by a series of correction terms that involve volume integrals of a

quantity associated with the fluctuations of the refractive index. When the

refractive index is constant, the correction terms become zero and the solution

reduces to the uniform space solution.

The iterative solution obtained is that for a single spectral component of
A

F 1 2 (T). To obtain F 1 2 (T), the iterative solution F 1 2 (r) must be substituted

in Eq. (3. 2) and the integration over V performed. However, in the case of

quasi-monochromatic fields, it is unnecessary to perform the actual integration.

A quasi-monochromatic field is one for which the effective spectral range, Av,

is smallcomparedwiththemeanfrequency, v; that is, Av/i < < 1. For this case,

provided that the time difference T is small compared with the coherence time

1 /v, it is known 1, 2 that the mutual coherence function is of the form
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F1 2 (r) = '12 (0)e- 2 iVT J j << 1/A ( 17)

where u is the mean frequency of T' 2 (r). Substituting from Eq. (3. 17) into

Eq. (3. 1) yields

[Vm 2 + k( - F1 2() 0 (m = 1, 2) (3.18)

where
k (Pro ,j) 2ir

C(P m )

Thus, under the quasi-monochromatic approximation of narrow spectral

width and smallpath differences, it has been shown that I 12(0) satisfies the same

pair of Helmholtz equations, Eq. (3. 5) , as does P,2( with v now fixed at the

mean frequency i . The boundary condition becomes F(S 1  , 2 0) and the iterative

solution yields ]"12(0) which when substituted in Eq. (3. 17) yields the quasi-

monochromatic solution. (It should be noted that the varying propagation ve-

locity implies that the time difference 7 may be different for two paths of the

same geometric length.)

The Green's function formulation of the solution in Eq. (3. 9) leads directly

to an important result which we state as a theorem.

Theorem

The field produced by a quasi-monochromatic coherent source extended

over a surface in contact with a source-free time-invariant medium with arbitrary

refractive index variation (in space) is itself coherent.

Proof

The proof of this theorem starts with the result 2 that a quasi-monochro-

matic field (source) is coherent if, and only if, the mutual intensity Jr.2 (0) can

be represented as the product of a wave function U, evaluated at P 1 . with its

complex conjugate U*, evaluated at P 2 ; that is

r(-P1, E2 0) = U(_Pl) *

In the quasi-monochromatic approximation it is seen from Eq. (3. 9) and the

discussion above that

,(TP)=P2 . r)" e-2i , F(" $2" 0) VT SI) 1 G2(_-2 f2')

s21Sl f

~d8I'dIs 2'(ITI << -) (3. 19)
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The assumption that the source is coherent allows the factorization

F(P 1, P2 1 0) (S) • - - dS U* (S) 8G T' D dS
, - 71' "1 S 1 "1 13.20)

where the notation has been changed slightly to make the relationship between

the bracketed quantities more apparent. The proof will be complete if it can be

shown that

OG 2 _G 8I*

aT' an'

To prove this relationship the following lemma 3 is used:

r*(P1 . P 0) = r(PT,-Pr1 0). (3,21)

Substitution from Eq. (3. 20) into Eq. (3. 21), yields

=[ U(S')) aG lP2f dS U*(S') 8G2O'l dS]. (3.22)
St "t

P2
P21  0P, V

SF

FIG. 1. Geometry For Green's Function.
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Since each of the bracketed quantities is a function of one point only, the cor-

responding quantities can be equated, yielding

eGg9 ' 8G2SU* (S'- (Pl0S')dS, U- u a G (Ps-)dS' (3.23

S1 St

and the desired relationship follows immediately.

4. Statistically Homogeneous Medium
An important case is that in which the refractive index is a stationary

(spatially homogeneous) isotropic random process. Assume that the fluctuations,

C (P), satisfy the relation

(_1) C T_2) = 2_P) C (P.

Here e (P1 ) E (P 2 ) denotes the average of e (P1 ) E (T2) taken over all pairs of

points P1 and P2 a fixed distance p apart; e 2(P) is the mean square deviation

(of the dielectric constant); and C(p) is a correlation function that depends on

the separation distance only.

In practice, the most that can be expected from this formulation of the pro-

pagation problem is a prediction of effects 'on the average. I For example,

suppose there is a plane quasi -monochromatic light source on a slab of

ground glass and it is desired to predict the distribution of the mutual coher-

ence function on the far side of the slab. The solution will yield a prediction

of the coherence function averaged over a large number of different slabs of

glass with the same statistical properties. In other words, the ensemble aver-

age distribution of the mutual coherence function can be predicted, but the dis -

tribution for a particular slab cannot.

Suppose, then, that a series of measurements are made to determine the

average value of F (PI'-P2' ) which corresponds to a series of independent

but statistically identical samples of a medium with refractive index fluctua-

tions. The source distribution ]- (S 1' -2" '") and the geometrical relations

are assumed to be identical for the entire series of measurements. The

average can be idealized by letting the number of experiments N become very

large and determining the limit of the average as N-- o. The jth measure -

ment is denoted by r (-I, E2, T) and the ensemble average of
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rjPV 2 , r ) , [r(P , P 2 , )] is defined by

N
[F(PI -P'T)] =lira 1- rj (-Pl-P2T ).

With reference to Eq. (3. 14), recalling that only e varies from one measure-
ment to another, and with the quasi-monochromatic approximation, the follow-

ing equation can be written:

(PP1 , f 2 .- ' 2l = e - {(S 1 ', S2r( 0) -
l g2 dSl' dS2 '

S 2' SI l 12

+ ko2 0) !-2 , g( 1 ", fl)
S21 S-2 ' 21 V"

×ag ' -t' dV1" dS 1' dS2'

+ k r ~ 1 " 9 " 0 k i P 2 1) ] 9 2 TP 2 1, _ E 2 )
$ 2 1 SI11", 21f

2/2' dV 1 d5'd 2

where the ensemble average has been taken inside the integrals. Since the

samples of the medium associated with the series of experiments are assumed

to be independent and statistically homogeneous, the ensemble average of
6 (Pl), e (-ll) e (-2")' and so on (formed with fixed points and different

samples of the medium) can be equated with the averages of these same

quantities obtained with a particular sample and varying the points (distance

relationships are preserved when these enter into consideration). Hence,

[e(P m")1 e(P) 0 , (m 1, 2),

[ e(Pm")e (P m'')]= (P ")E(p '1) = (pC(p) , (m = 1, 2) , and so on.
- m -m -M
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Thus, to second order terms the result that the ensemble average of the
mutual coherence function (in the quasi-monochromatic approximation) is
given by

[F , T)i] e _27riP (S N 1
1 S2')- 2, dS1 dS 2 '

Sl' 2' "1 " ~2

(P) F(S8g 2 ( 2, S 2 1)

2 1 1S2')

X 5of 5-r CP 1 '-'I ) g1 (TP1 I'Ti "1 ) g (P1
1  Og a 1 ~~"

V 1' Vill,

XdV"'I dVtS1 -2

+ k 62 (P) Y F (SS 0) C 91TI"P") (" fP)
-1-2' 

1-V1-2 V21'

gP2T", E2) ", 1 "1 .~ g( 2', S 2  V2
1' dS1 ' (L2'

ke~p S -1 '-" 0) C C(Ip 2"'_-p21 "
_ 217 S 21f V 2 1-2-

g PII f2 ( '9 2 22 ) V d ~ld

S2 2 ' 2 2 - '-2 2'211 2f -S1  -S2

The statistics of the medium enter into this expression in the mean square of

the refractive index fluctuation, C (P), and the two-point correlation function
C(p) which must be integrated over the volume of the medium.
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